Extracellular adherence protein from Staphylococcus aureus enhances internalization into eukaryotic cells.

نویسندگان

  • Axana Haggar
  • Muzaffar Hussain
  • Helena Lönnies
  • Mathias Herrmann
  • Anna Norrby-Teglund
  • Jan-Ingmar Flock
چکیده

In this study we have shown that Eap (extracellular adherence protein) plays a role in the internalization process of Staphylococcus aureus into eukaryotic cells. Eap is a protein that is mostly extracellularly and to a lesser extent is bound to the bacterial surface as a result of rebinding. Eap is able to bind to several plasma proteins, such as fibronectin, fibrinogen, and prothrombin. It has the capacity to form oligomers and is able to agglutinate S. aureus. A mutant strain, Newman mAH12 (eap:: Ery(r)), with a deficient eap gene was used in the present study. We have demonstrated that (i) strain Newman mAH12 could adhere to and become internalized to a higher extent by eukaryotic cells than the isogenic mutant, (ii) strain Newman mAH12 complemented with the eap gene displayed restoration of the internalization level, (iii) externally added Eap enhanced the internalization of laboratory and clinical S. aureus strains as well as of S. carnosus (a coagulase-negative species devoid of proteins important for internalization), and (iv) antibodies against Eap were able to block the internalization process in strain Newman mAH12 and clinical isolates. Eap, with its broad binding capacity and its surface localization, thus seems to contribute to the internalization of S. aureus into eukaryotic cells. We therefore propose a novel internalization pathway for S. aureus in which Eap plays an enhancing role.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fibronectin binding protein and host cell tyrosine kinase are required for internalization of Staphylococcus aureus by epithelial cells.

Staphylococcus aureus expresses several surface proteins that promote adherence to host cell extracellular matrix proteins, including fibronectin (Fn). Since this organism has recently been shown to be internalized by nonprofessional phagocytes, a process that typically requires high-affinity binding to host cell receptors, we investigated the role of its Fn binding proteins (FnBPs) and other s...

متن کامل

Rebinding of extracellular adherence protein Eap to Staphylococcus aureus can occur through a surface-bound neutral phosphatase.

Extracellular adherence protein Eap secreted from Staphylococcus aureus was previously found to enhance the adherence of S. aureus to eukaryotic cells. This enhancement effect is due to the ability of Eap to rebind to S. aureus and to bind to eukaryotic cells and several plasma and matrix proteins. In this study we defined one potential binding target for Eap on the surface of S. aureus, a surf...

متن کامل

Expression of the biofilm-associated protein interferes with host protein receptors of Staphylococcus aureus and alters the infective process.

The adherence of Staphylococcus aureus to soluble proteins and extracellular-matrix components of the host is one of the key steps in the pathogenesis of staphylococcal infections. S. aureus presents a family of adhesins called MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) that specifically recognize host matrix components. We examined the influence of biofilm-as...

متن کامل

The extracellular adherence protein from Staphylococcus aureus inhibits neutrophil binding to endothelial cells.

Extracellular adherence protein (Eap) from Staphylococcus aureus inhibits the adherence of neutrophils to nonstimulated and tumor necrosis factor alpha-stimulated endothelial cells in both static adhesion assays and flow adhesion assays. Consequently, Eap also impaired their transendothelial migration. During an S. aureus infection, Eap may thus serve to reduce inflammation by inhibiting neutro...

متن کامل

Integrin-mediated invasion of Staphylococcus aureus into human cells requires Src family protein-tyrosine kinases.

Staphylococcus aureus, a common cause of nosocomial infections, is able to invade eukaryotic cells by indirectly engaging beta1 integrin-containing host receptors, whereas non-pathogenic Staphylococcus carnosus is not invasive. Here, we identify intracellular signals involved in integrin-initiated internalization of S. aureus. In particular, the host cell actin cytoskeleton and Src family prote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 71 5  شماره 

صفحات  -

تاریخ انتشار 2003